Improving Prediction Accuracy in Neighborhood-Based Collaborative Filtering by Using Local Similarity
نویسندگان
چکیده
منابع مشابه
Improving K-nearest-neighborhood based Collaborative Filtering via Similarity Support
Collaborative Filtering (CF) is the most popular choice when implementing personalized recommender systems. A classical approach to CF is based on K-nearest-neighborhood (KNN) model, where the precondition for making recommendations is the KNN construction for involved entities. However, when building KNN sets, there exits the dilemma to decide the value of K --a small value will lead to poor r...
متن کاملImproving Neighborhood-Based Collaborative Filtering by a Heuristic Approach and an Adjusted Similarity Measure
“Collaborative filtering” is the most used approach in recommendation systems since it provides good predictions. However, it still suffers from many drawbacks such as sparsity and scalability problems especially for huge datasets which consist of a large number of users and items. This paper presents a new algorithm for neighborhood selection based on two heuristic approaches. The first of whi...
متن کاملImproved Neighborhood-based Collaborative Filtering
Recommender systems based on collaborative filtering predict user preferences for products or services by learning past user-item relationships. A predominant approach to collaborative filtering is neighborhood based (“k-nearest neighbors"), where a user-item preference rating is interpolated from ratings of similar items and/or users. In this work, we enhance the neighborhood-based approach le...
متن کاملan optimal similarity measure for collaborative filtering using firefly algorithm
recommender systems (rs) provide personalized recommendation according to user need by analyzing behavior of users and gathering their information. one of the algorithms used in recommender systems is user-based collaborative filtering (cf) method. the idea is that if users have similar preferences in the past, they will probably have similar preferences in the future. the important part of col...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3013733